ivec.push_back( ix );
cout << "ivec: размер: " << ivec.size()
<< " емкость: " << ivec.capacity() << endl;
}
}
В реализации Rogue Wave и размер, и емкость ivec сразу после определения равны 0. После вставки первого элемента размер становится равным 1, а емкость – 256. Это значит, что до первого дополнительного выделения памяти в ivec можно вставить 256 элементов. При добавлении 256-го элемента вектор должен увеличиться: выделить память объемом в два раза больше текущей емкости, скопировать в нее старые элементы и освободить прежнюю память. Обратите внимание: чем больше и сложнее тип данных элементов, тем менее эффективен вектор в сравнении со списком. В таблице 6.1 показана зависимость начальной емкости вектора от используемого типа данных.
Таблица 6.1. Размер и емкость для различных типов данных
Тип данных |
Размер в байтах |
Емкость после первой вставки |
int |
4 |
256 |
double |
8 |
128 |
простой класс #1 |
12 |
85 |
string |
12 |
85 |
большой простой класс |
8000 |
1 |
большой сложный класс |
8000 |
1 |
Итак, в реализации Rogue Wave при первой вставке выделяется точно или примерно 1024 байта. После каждого дополнительного выделения памяти емкость удваивается. Для типа данных, имеющего большой размер, емкость мала, и увеличение памяти с копированием старых элементов происходит часто, вызывая потерю эффективности. (Говоря о сложных классах, мы имеем в виду класс, обладающий копирующим конструктором и операцией присваивания.) В таблице 6.2 показано время в секундах, необходимое для вставки десяти миллионов элементов разного типа в список и в вектор. Таблица 6.3 показывает время, требуемое для вставки 10 000 элементов (вставка элементов большего размера оказалась слишком медленной).
Таблица 6.2. Время в секундах для вставки 10 000 000 элементов
Тип данных |
List |
Vector |
int |
10.38 |
3.76 |
double |
10.72 |
3.95 |
простой класс |
12.31 |
5.89 |
string |
14.42 |
11.80 |