Определение иерархии классов
В этой главе мы построим иерархию классов для представления запроса пользователя. Сначала реализуем каждую операцию в виде отдельного класса:
NameQuery // Shakespeare
NotQuery // ! Shakespeare
OrQuery // Shakespeare || Marlowe
AndQuery // William && Shakespeare
В каждом классе определим функцию-член eval(), которая выполняет соответствующую операцию. К примеру, для NameQuery она возвращает вектор позиций, содержащий координаты (номера строки и колонки) начала каждого вхождения слова (см. раздел 6.8); для OrQuery строит объединение векторов позиций обоих своих операндов и т.д.
Таким образом, запрос
untamed || fiery
состоит из объекта класса OrQuery, который содержит два объекта NameQuery в качестве операндов. Для простых запросов этого достаточно, но при обработке составных запросов типа
Alice || Emma && Weeks
возникает проблема. Данный запрос состоит из двух подзапросов: объекта OrQuery, содержащего объекты NameQuery для представления слов Alice и Emma, и объекта AndQuery. Правым операндом AndQuery является объект NameQuery для слова Weeks.
AndQuery
OrQuery
NameQuery ("Alice")
NameQuery ("Emma")
NameQuery ("Weeks")
Но левый операнд– это объект OrQuery, предшествующий оператору &&. На его месте мог бы быть объект NotQuery или другой объект AndQuery. Как же следует представить операнд, если он может принадлежать к типу любого из четырех классов? Эта проблема имеет две стороны:
Решение, не согласующееся с объектной ориентированностью, состоит в том, чтобы определить тип операнда как объединение и включить дискриминант, показывающий текущий тип операнда:
// не объектно-ориентированное решение
union op_type {
// объединение не может содержать объекты классов с
// ассоциированными конструкторами
NotQuery *nq;
OrQuery *oq;
AndQuery *aq;
string *word;
};
enum opTypes {
Not_query=1, O_query, And_query, Name_query
};
class AndQuery {
public:
// ...
private:
/*
* opTypes хранит информацию о фактических типах операндов запроса
* op_type - это сами операнды
*/
op_type _lop, _rop;
opTypes _lop_type, _rop_type;
};
Хранить указатели на объекты можно и с помощью типа void*:
class AndQuery {
public:
// ...
private:
void * _lop, _rop;
opTypes _lop_type, _rop_type;
};
Нам все равно нужен дискриминант, поскольку напрямую использовать объект, адресуемый указателем типа void*, нельзя, равно как невозможно определить тип такого объекта по указателю. (Мы не рекомендуем применять описанное решение в C++, хотя в языке C это весьма распространенный подход.)
Основной недостаток рассмотренных решений состоит в том, что ответственность за определение типа возлагается на программиста. Например, в случае решения, основанного на void*-указателях, операцию eval() для объекта AndQuery можно реализовать так:
void
AndQuery::
eval()
{
// не объектно-ориентированный подход
// ответственность за разрешение типа ложится на программиста
// определить фактический тип левого операнда
switch( _lop_type ) {
case And_query:
AndQuery *paq = static_cast<AndQuery*>(_lop);
paq->eval();
break;
case Or_query:
OrQuery *pqq = static_cast<OrQuery*>(_lop);
poq->eval();
break;
case Not_query:
NotQuery *pnotq = static_cast<NotQuery*>(_lop);
pnotq->eval();
break;
case Name_query:
AndQuery *pnmq = static_cast<NameQuery*>(_lop);
pnmq->eval();
break;
}
// то же для правого операнда
}
В результате явного управления разрешением типов увеличивается размер и сложность кода и добавление нового типа или исключение существующего при сохранении работоспособности программы затрудняется.
Объектно-ориентированное программирование предлагает альтернативное решение, в котором работа по разрешению типов перекладывается с программиста на компилятор. Например, так выглядит код операции eval() для класса AndQuery в случае применения объектно-ориентированного подхода (eval() объявлена виртуальной):
// объектно-ориентированное решение
// ответственность за разрешение типов перекладывается на компилятор
// примечание: теперь _lop и _rop - объекты типа класса
// их определения будут приведены ниже
void
AndQuery::
eval()
{
_lop->eval();
_rop->eval();
}
Если потребуется добавить или исключить какие-либо типы, эту часть программы не придется ни переписывать, ни перекомпилировать.